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Abstract. This paper presents the development of regression and classification 

algorithms to predict greenhouse gas emissions caused by the building sector, 

and identify key building characteristics, which lead to excessive emissions. 

More specifically, two problems are addressed: the prediction of metric tons of 

CO2 emitted annually by a building and building compliance to environmental 

laws according to its physical characteristics, such as energy, fuel, and water 

consumption. The experimental results show that energy use intensity and natu-

ral gas use are significant factors for decarbonizing the building sector. 
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1 Introduction 

It is widely known that climate change is a global threat and immediate actions need 

to be taken to limit its most important side effects. The operation of buildings ac-

counts for approximately 40% of primary energy consumption globally, drawing the 

attention of governments to act instantly by adopting energy policies and carbon 

emission measures [1]. Given this reality, countries and cities have already set strict 

long-term energy efficiency and carbon reduction goals for existing and new build-

ings. To support global and city-scale decarbonization goals, energy disclosure direc-

tives are a significant policy tool to accelerate the transition towards climate neutrality 

[2].  

This work evaluates several regression and classification algorithms, for predicting 

the annual greenhouse gas (GHG) emissions using properties reported at energy dis-

closure records. It proposes a methodology for emissions prediction utilizing feature 

engineering on energy and fuel consumption data, collected from large residential and 

public buildings in New York. The feature selection and engineering phase includes 

grouping buildings into 9 main categories according to their type and applying a loga-

rithmic transformation to the Total GHG emissions to eliminate outliers. Also, high 

correlated features are removed from the analysis. In addition, this work analyzes 

various classification algorithms for predicting compliance to environmental laws. 

For this problem, the same data source is used, combined with emissions limits pro-

vided by the Local Law 97 (LL97), for two compliance periods. 
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This work differs from standard data-driven predictive models for the building sec-

tor in several ways. Although there are numerous studies discussing energy waste and 

performance predictive models for buildings, there is limited research focusing on 

forecasting emissions. Also, emissions prediction at a building-scale level has not 

been used so far, as most of the relevant studies mainly present their results at a city-

scale or country-scale level [21, 22]. So, this work tries to fill this gap in the literature 

by predicting GHG emissions caused by the building sector at a building-scale level, 

analyzing their spatial characteristics and behavior. Additionally, our contribution 

could help governments and building owners understand the environmental footprint 

of buildings and take actions for energy efficiency and decarbonization. 

The paper is structured as follows: Section 2 presents background information and 

reviews the literature, Section 3 provides the problem definition along with a brief 

description of the datasets, the pre-processing steps and the methods used. Section 4 

presents exploratory data analysis results along with predictions. In Section 5 results 

are discussed and evaluated and Section 6 concludes the paper with future directions. 

2 Literature Review 

Building performance and energy consumption has been the subject of abundant aca-

demic research, driven by the need for a “greener” building sector. Unsupervised data 

analytics and clustering techniques are considered more practical and promising in 

discovering knowledge given limited prior information, concerning building opera-

tional and consumption data [3].  

K-means clustering has been used to identify buildings with similar temporal energy 

performance patterns [4,5]. Also, clustering tenants’ behavior has proven that there is 

a strong relationship between the number of bedrooms and energy consumption, as 

well as home working [6]. In addition, K-means has been applied to group education-

al buildings according to their energy performance for space heating and evaluate 

energy savings in the building sector [7]. Another study used K-means to cluster 

school buildings to create a priority list for retrofit measures [8]. 

Furthermore, Artificial Neural Networks (ANNs) are commonly used in such prob-

lems because of their high predictive power [9]. However, their implementation is 

challenging because several hyperparameters need to be adjusted for accurate results 

[10]. ANNs are often compared with ensemble methods like Random Forest. In [11] it 

is mentioned that ANNs performed marginally better than Random Forest in predict-

ing hourly HVAC energy consumption, but ensemble methods tend to deal with mul-

tidimensional data better. Also, fuzzy systems and ANNs using occupancy data are 

used to describe how energy is consumed within a building [12].  

Another study compares ANNs with Support Vector Machines (SVM) for predict-

ing building energy consumption in four office buildings [13]. The results have shown 

that SVM performs better than ANNs and the reason could be the small data pool 

used in this study, thus abnormal data were not so frequent. Also, when applying 

SVM for prediction someone needs less hyperparameters to optimize compared to 

ANNs. Additionally, Support Vector Regression (SVR) has been used to develop 



3 

sensor-based forecasting models for residential buildings [14] and to improve energy 

efficiency of HVAC systems analyzing historical data for buildings [15].  

A common practice in predicting electricity consumption is to transform a regres-

sion model to a binary classification problem with ‘high’ and ‘low’ target labels [16]. 

It is stated that turning the regression problem to a binary one, achieves better results 

when the point of separation is the mean of all instances [17,18].  

Another work focuses on generalizing self-reported energy data from a small sam-

ple of buildings to a city-scale level [19]. Three different Machine Learning (ML) 

algorithms are used, namely Linear Regression, Random Forest, and SVR, along with 

feature selection techniques to make predictions from the Local Law 84 (LL84) self-

reported energy disclosure data for large buildings. The results showed that Linear 

Regression performs better when predicting total building energy consumption at the 

zip code-level for the entire city, while SVR performs better in terms of accuracy 

when estimating energy use within the sample of LL84 buildings. Also, building size, 

use and morphology seem to be significant attributes for energy use prediction at the 

building and zip code levels. Larger buildings are found to have smaller Energy Use 

Intensity (EUI), while taller ones are more intensive.  

Energy benchmarking is often used to evaluate the energy performance of build-

ings and is a crucial step towards reducing emissions. Comparability is a vital element 

to the success of a benchmarking system and has been the subject of many studies. In 

order to improve the comparability of benchmarking the energy performance of Eng-

lish schools was examined, assessing the impact of various features, such as built 

form or occupancy [20]. By analyzing the dataset using ANNs, the floor area and the 

number of pupils seemed to be very important determinants of school energy use. 

Another work presented a method for energy classification and rating of school 

based on fuzzy clustering techniques compared with frequency rating techniques [21]. 

The fuzzy clustering method forms more robust classes avoiding imbalanced classes 

and classifies the buildings more precisely according to their common characteristics 

and similarities. The results indicated that school buildings should improve consider-

ably their energy consumption and environmental quality.  

In another study a new methodology for buildings energy benchmarking is dis-

cussed [22]. It comprises feature selection, clustering algorithm adaptation, result 

validation and interpretation. In comparison with the energy star approach, the pro-

posed methodology was able to provide a more comprehensive benchmarking ap-

proach. This is because the clustering approach incorporates various building charac-

teristics which affect energy usage, while the Energy Star approach classifies the 

buildings according to their use type.  

Several studies observed factors affecting CO2 emissions in the building sector and 

proposed methods for predicting building environmental footprint. More specifically, 

a Back Propagation (BP) ANN has been utilized for predicting CO2 emissions caused 

by the Chinese commercial sector [23]. The most affecting indicators for emissions 

associated with the building sector were energy intensity, coal consumption, second 

industry GDP, education level, total population, business sector GDP and imports.  

Other works focused on estimating indirect building carbon emissions within the 

boundaries of various types of Local Climate Zones (LCZs) [24]. The aim was to 
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discover interesting patterns and help improving energy management in specific re-

gions. The authors conclude that it is necessary to include not only morphological 

parameters, which are used in this study, but also information about occupancy, 

HVAC systems, building use, materials and more. 

3  Approach 

Several studies have been conducted to predict energy consumption patterns and 

evaluate the factors that affect energy waste, both in existing buildings and new con-

structions. Despite the significance of the afore mentioned studies, there is limited 

research focusing on forecasting carbon emissions caused by the building sector and 

which factors contribute most to the environmental footprint of a building. 

3.1  Problem Definition 

This work analyzes an energy disclosure dataset with the primary purpose of predict-

ing the total GHG emissions of a building and focused on discovering any useful 

information about factors causing excessive emissions. Also, this work can give in-

sights to building owners and decision makers on whether a building complies or not 

to the specific requirements of decarbonization legislations.  

3.2 Data Description 

Two data sources were used for this study. LL84, or the NYC Benchmarking Law 

requires annual benchmarking and disclosure of energy and water usage information. 

LL84 covers properties with a single building with a gross floor area greater than 

50000 square feet and lots having more than one building with a gross floor area 

greater than 100000 square feet. This dataset includes information about energy use 

by fuel type, physical descriptors, as well as information concerning occupancy, water 

use and GHG emissions. We chose data for 2017, which is the latest version publicly 

available.  

The second data source is LL97. LL97 sets detailed requirements for two initial 

compliance periods: 2024-29 and 2030-34. Buildings over 25000 square feet are re-

quired to meet annual carbon intensity limits during each compliance period based on 

building type. To comply, building owners must submit an emissions intensity report 

every year or pay substantial fines. In this work, we aim to predict whether a building 

complies or not for a compliance period, using the LL84 dataset, combined with the 

carbon emissions intensity limits provided by LL97. The emissions intensity limits 

are listed in Table 1. 

3.3 Data Processing 

LL84 data are self-reported, therefore many data fields suffer from missing values and 

outliers. Several cleaning and filtering steps were conducted prior to analysis. First, 
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entries with duplicate or missing Borough, Block and Lot (BBL) number were re-

moved, because BBL is a unique spatial identifier for properties in NYC. Then obser-

vations with zero or missing values either in their reported weather normalized source 

EUI or in their total GHG emissions were dropped. Also, some features were removed 

because they either suffered from a high percentage of missing values or were not 

relevant to our predictions.  

Table 1. Carbon emissions intensity limits by property type and period. 

Space Use Carbon Limit 2024-29 

(kgCO2e/sf) 

Carbon Limit 2030-34 

(kgCO2e/sf) 

Medical Office 23.81 11.93 

Retail 11.81 4.3 

Assembly 10.74 4.2 

Hotel 9.87 5.26 

Office 8.46 4.53 

School 7.58 3.44 

Multifamily Housing 6.75 4.07 

Factory 5.74 4.67 

Storage/Warehouse 4.26 1.1 

Then, for the remaining features, missing entries have been replaced with the mean 

value of the respective column. Additionally, some features were excluded from the 

analysis, as they were highly correlated with other features, like energy consumption 

fields with different units. Finally, one hot encoding has been performed for the Pri-

mary Property Type feature to fit our data to several algorithms. Fig. 1 shows the 

feature selection process.  

 

Fig. 1. Feature selection process. 
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The final dataset kept for analysis consists of 15 features listed below: 

Weather Normalized Site EUI 

(kBtu/ft2) 

Weather Normalized Site Electricity Intensity 

(kWh/ft2) 

Self-Reported Gross Floor 

Area (ft2) 

Weather Normalized Site Natural Gas Intensity 

(kWh/ft2) 

Primary Property Type Self-

Selected 

Water Use Intensity (All Water Sources) (gal/ ft2) 

Year Built Total GHG Emissions (Metric Tons CO2e) 

Number of Buildings Weather Normalized Source EUI (kBtu/ft2) 

ENERGY STAR Score Weather Normalizer Site Natural Gas Use 

(therms) 

Occupancy Electricity Use- Grid Purchase (kWh) 

Borough  

 

The next step was to group building type values to be compatible with the building 

types listed in LL97. More specifically, the building types were grouped into 9 main 

categories: Office, Educational, Hotel, Residential, Warehouse, Public Building, Re-

tail, Hospital, and Other. Most of the buildings were residential, only 30% being non-

residential properties. To filter our data from misreported or anomalous entries, a 

logarithmic transformation to the Total GHG values was applied for each building 

type. The aim was to approximate the normal distribution given that a log-normal 

distribution was observed in the raw data, as shown in Fig. 2.Observations were ex-

cluded from the analysis if they outside the threshold of two standard deviations from 

the logged mean.  

 

 

Fig. 2. Histogram of log transformed GHG emissions. The red line shows the log sample mean. 
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4 Experimental Results 

This section presents prediction results for the two problems; predicting the annual 

CO2 emissions (in metric tons emitted) using regression and the second determines 

which buildings comply to emissions limits via classification. 

4.1 Predictions for total GHG emissions 

Using regression, the following results were achieved (Table 2). Before applying any 

regression algorithm, a train test split was performed, keeping 25% of the data for 

testing. The algorithms examined were Linear Regression, SVR, Random Forest, 

XGBoost, CatBoost and ANNs. Also, a hyperparameter tuning was conducted to 

improve model performance. Three evaluation metrics were used, Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE) and R2. The ANN model used in the 

study is a feed forward MLP with 3 hidden layers and a Rectified Linear Unit (ReLu) 

activation function. The scores achieved are shown in Table 2. The best performing 

algorithm was ANNs achieving the lowest RMSE and highest R2. Also, CatBoost 

performed very well, resulting in the lowest MAE among all algorithms. 

 

Table 2. Regression results after the selection of the optimal hyperparameters 

 MAE RMSE R2 

Linear Regression 33.59 63.67 0.8563 

SVR 13.6 32.62 0.9622 

Random Forest 9.37 19.68 0.9862 

XGBoost 11.09 19.3 0.9868 

CatBoost 8.81 17.26 0.9894 

ANN 9.15 16.75 0.9900 

4.2 Predicting compliance for 2024-29 

The goal of the experiments in this section was to predict compliance for properties 

contained in the LL84 dataset, using the LL97 carbon limits for each building type. 

This problem is a binary classification one, determining whether a certain building 

complies or not to the LL97 regulation.  

For this binary classification problem, the feature “self-reported gross floor area” 

was excluded, as it was used to calculate the limits for compliance and thus it would 

affect predictions. We kept the same features for prediction as these used for the re-

gression problem. A train/test split was conducted keeping 25% of the data to evalu-

ate the predictions. The algorithms used were Random Forest, XGBoost, CatBoost 

and ANNs. For this problem, a feed forward MLP was developed, with 1 hidden lay-

er. The metrics used for evaluation were accuracy and F-score. A grid search was 

conducted to determine if there are any hyperparameters which could enhance model 

accuracy. Table 3 illustrates the models’ prediction performance tested on unknown 
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data. Random Forest is the most powerful predictor with 98,7% accuracy and 0.9918 

F-score. All algorithms performed well with insignificant differences between them.  

Table 3.   Classification results for the period 2024-29 

 Accuracy F-score 

Random Forest 0.987 0.9918 

XGBoost 0.983 0.9896 

CatBoost 0.985 0.9911 

ANN 0.984 0.9902 

 

Table 4 shows the confusion matrix using the best performing algorithm for this peri-

od which is Random Forest. Rows represent the actual target values and columns the 

predicted labels. 

Table 4. Confusion matrix for the period 2024-29 

  Predicted  Predicted  

  0 1 

Actual  0 947 33 

Actual  1 30 3845 

4.3 Predicting compliance for 2030-34 

The acceptable CO2 limits emitted from buildings for the period 2030-34 are much 

lower than the limits of the previous period examined, but the procedure is almost 

identical. The results are shown in Table 5. In this case, CatBoost appears to be the 

best predictor, but again the scores are very similar for all algorithms. 

 

Table 5. Classification results for the period 2030-34 

 Accuracy F-score 

Random Forest 0.981 0.9538 

XGBoost 0.981 0.9548 

CatBoost 0.982 0.9561 

ANN 0.978 0.9472 

 

Table 6 shows the confusion matrix using the best performing algorithm for this peri-

od, which is CatBoost. Now most of the buildings do not comply with the regulations 

and thus belong to class 0. 

 



9 

Table 6. Confusion matrix for the period 2030-34 

  Predicted  Predicted  

  0 1 

Actual  0 3808 60 

Actual  1 28 987 

 

5 Discussion 

Results on the regression problem indicate that tree-based algorithms perform very 

well, with CatBoost appearing to be the best among them for all metrics. However, 

the differences are insignificant observing the R2 score, which is almost 0.99 for all 

tree-based algorithms. Thus, ensemble methods seem to be more promising for this 

kind of problem, compared with traditional regression algorithms like Linear Regres-

sion or SVR which resulted in less accurate predictions. Indeed, for Linear Regression 

MAE and RMSE scores were 3 times bigger compared with ANNs and the ensemble 

models. However, SVR overall performance was good reaching an R2 score of 0.96. It 

is worth mentioning, that increasing the number of trees for Random Forest, XGB and 

CatBoost from 100 to 1000 during hypertuning led to lower errors in all metrics. In 

addition, ANNs gave the best results in terms of RMSE and R2, but it was more diffi-

cult to find the best hyperparameters and their execution time is longer compared with 

tree-based algorithms. 

Concerning the pre-processing phase, the outlier detection process, which was pro-

posed in previous studies [5,17], significantly improved model performance. Observa-

tions that fell out of the threshold of two standard deviations of their logged mean 

were excluded from the analysis. Also, missing values have been replaced with the 

mean value of the respective column. This procedure limited the number of data en-

tries which were drastically misreported and narrowed the range of the target value 

between 123 and 805 metric tons of CO2 emitted.  

Another interesting finding is that the most important predictors are the gross floor 

area, source and site energy use intensity, electricity, and natural gas use. That means 

that these characteristics could be the key for decarbonizing buildings. On the contra-

ry, building type does not seem to play a significant role for carbon emissions. This 

could be explained by highlighting that almost 70% of the buildings reported in the 

dataset were residential, so it was difficult to draw conclusions for other building 

types, which appeared only about 5% of times. Therefore, a more balanced dataset 

regarding the property type may have been more informative about the environmental 

footprint of different types.  

Also, site energy use intensity tends to be more influencing for building emissions 

than source intensity. An explanation for that could be the fact that site EUI is the 

amount of heat and electricity consumed by a building as reflected in utility bills. On 

the contrary, source EUI represents the total amount of raw fuel that is required to 

operate the building and it incorporates all transmission, delivery, and production 

losses. Consequently, it is more likely that building owners are more aware of their 
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site energy use by looking at their bills, but more unlikely to have calculated their 

source energy use properly. So, site EUI tends to be more reliable for our predictions, 

because it has a lower possibility to be misreported in the LL84 dataset. However, the 

Environmental Protection Agency (EPA) suggested that source energy is the most 

equitable unit of evaluation and provides a complete assessment of energy efficiency 

in a building [25]. 

Comparing our findings for the classification problems, for the first period (2024-

29) examined almost 80% of the buildings comply with LL97 regulations, while for 

the second period (2030-34) only 20% of the buildings fulfill the requirements. This 

indicates the need to make a transition towards greener technologies and energy effi-

ciency refurbishments in the next few years. Additionally, there is a slight difference 

for model performance between the two periods, with the first period achieving higher 

F scores than the second, for all algorithms. Indeed, false positives for the second 

period experiments increased significantly compared with the first period. However, 

the overall performance for all algorithms was good, achieving almost R2 = 0.96. 

6 Conclusions  

Understanding building environmental footprint is a crucial component of improv-

ing urban sustainability plans, reach carbon reduction goals, as well as achieve higher 

levels of energy efficiency and comfort. The analysis presented here aims to predict 

the total GHG emissions of buildings using the LL84 self-reported energy disclosure 

data from properties in New York.  

Using the acceptable limits of carbon by building category, which are provided by a 

carbon reduction legislation applied in NYC, we tried to predict whether a building 

complies to the carbon law for two periods. Using six ML algorithms for the regres-

sion problem and three for the classification problems, the results suggest that the data 

from LL84 sample can produce reasonably accurate predictions of carbon emissions 

across the city at a building scale.  

Overall, we found that tree-based algorithms and ANNs perform better than tradi-

tional algorithms like Logistic Regression and SVR, achieving impressively higher 

scores. Additionally, the preprocessing procedure seems to be very important in filter-

ing self-reported datasets, which suffer from numerous missing and misreported val-

ues. It is also observed that building size and energy use intensity play a major role in 

buildings’ environmental footprint. 

 However, some assumptions or personal estimations may affect the validity of the 

results. Although a preprocessing and data cleaning procedure has been followed, still 

it was difficult to understand if all entries are correct or detect all anomalous ones, 

since LL84 is self-reported. Also, most of the buildings examined were residential 

and the commercial buildings were very limited. This imbalance does not favor the 

results and makes it harder to draw conclusions about specific property types and their 

environmental footprint. 

Future work should collect more energy disclosure data from previous years and 

incorporate new data, publicly available by the end of the year. Also, data from dif-
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ferent regions or cities along with weather information would provide a more com-

prehensive view of carbon emissions caused by the urban building stock.  

In addition, more ML algorithms, as well as feature selection techniques, could 

improve performance. Regarding ANNs implementation, a more detailed selection of 

hyperparameters is desirable to explore their dynamic in these types of problems. 

Finally, the importance of focusing on forecasting emissions is worth mentioning, as 

there is little research on this specific field. Combining building with transportation 

data could also be an idea for future research, as the transportation sector accounts for 

a significant amount of urban carbon emissions and could be beneficial for city-scale 

level sustainability plans. 
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